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Abstract

A ®nite element study is performed on the frictionless normal contact of elastic±plastic spheres and rigid spheres. The

e�ects of elasticity, strain hardening rate, relative size of the spheres and their relative yield strength are explored.

Indentation maps are constructed, taking as axes the contact size and yield strain, for a wide range of geometries. These

show the competing regimes of deformation mechanism: elastic, elastic±plastic, fully plastic similarity and ®nite de-

formation regime. The boundaries of the regimes depend upon the degree of strain hardening, relative size of the bodies

in contact and upon their relative yield strengths. The regime of practical importance is the ®nite deformation regime

for practical applications such as powder compaction. The contact force±displacement law, to be used as a part of the

micromechanical constitutive model for powder compaction, is constructed semi-empirically by scaling the similarity

contact law by a factor which depends on the relative size, relative yield strength and the strain hardening exponent of

the bodies in contact. The accuracy of the assumption of independent contacts is addressed for the isostatic compaction

of an assembly of rigid and deformable spheres, arranged in a B2 unit cell, based on two overlapping simple cubic

lattices. Provided that the relative density of the compact is lower than about 0.82, the contacts deform indepen-

dently. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The elastic±plastic contact of two non-conforming bodies is a fundamental problem in the mechanics of
materials, with a wide range of applications. For example, the cold pressing of metallic powders into near
net shape parts is by the plastic indentation of deformable particles, and predictions of the multi-axial
compaction behaviour are based on the knowledge of the local indentation response between particles.
Recently, there has been interest in the development of powder composites, such as silicon carbide particles
mixed with aluminium alloy powder, whereby the hard ceramic particles strengthen the soft metallic phase.
There is a need to develop accurate constitutive models of compaction in order to optimise tooling design
and to eliminate manufacturing defects such as cracking, from regions of tensile residual stress within the
part. The purpose of this article is to determine the contact law between powder particles, for subsequent
use within compaction models for the powder aggregate. In the early stages of compaction (``Stage I
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compaction''), the aggregate can be viewed as an assembly of particles, and the macroscopic response can
be deduced by suitable homogenisation of the local indentation response between two representative
particles. (See for example, Fleck et al. (1992) for rate-independent monolithic powder, and Storakers et al.
(1999) for the general viscoplastic composite case.) The assumption that the contacts between particles
behave independently plays an essential role in these models. Provided the initial relative density of the
aggregate exceeds about 0.3, the number of contacts between particles is su�ciently high to prevent particle
rolling so that the particles undergo a combination of mutual normal indentation and sliding. Fleck et al.
(1992) has shown that the shear tractions associated with inter-particle sliding have a negligible e�ect on the
macroscopic response. Thus, a knowledge of the frictionless normal indentation law su�ces to determine
the compaction response of the aggregate.

A major motivation for the current study is the compaction of a mixture of metallic and ceramic
powders. The compaction of metal±ceramic composite powders is complicated by the occurrence of various
con®gurations of ceramic±ceramic, metal±metal and metal±ceramic contacts. We can idealise ceramic±
ceramic contacts and metal±metal contacts by the indentation of two elastic spheres and two elastic±plastic
spheres, respectively. For the case of a metal±ceramic contact, we have performed preliminary ®nite ele-
ment calculations of mutual indentation of a metallic sphere, with a realistic elastic±plastic constitutive law,
and a ceramic sphere with a realistic elastic modulus. We ®nd that the elastic compliance of the ceramic
gives a negligible contribution to the indentation response, and we conclude that the ceramic particles can
be treated as rigid. Thus, a metal±ceramic contact can be idealised by the indentation of an elastic±plastic
sphere by a rigid sphere.

Storakers et al. (1999) have recently developed a model to predict the macroscopic compaction response
of a powder composite. The model makes use of the Storakers et al. (1997) similarity solution for the
contact of two spheres of di�ering diameter and made of di�erent viscoplastic solids. This contact law is
summarised in Section 1.1 for the case of rate-independent power-law hardening solids. In the present
article, we seek to determine the regime of validity for this assumed contact law by modelling directly the
mutual indentation of two spheres of unequal diameter and unequal material properties. We ®nd that
elasticity, ®nite deformation, particle shape and the interaction between contacts each can have a signi®cant
e�ect upon the contact law, depending upon the operative regime of indentation.

The present numerical study of inter-particle contact has the following main goals:
· To explore the domain of validity of the similarity solution for the indentation of a rigid sphere against a

deformable sphere and for the mutual indentation of two deformable spheres. Speci®c attention is paid
to the e�ects of elasticity, ®nite deformation and the relative size of the spheres.

· To establish the limits of validity of the assumption of independent contacts.
· To establish an approximate contact law between two dissimilar particles for the practical range of ma-

terial parameters, relative particle diameters and the degree of indentation associated with Stage I pow-
der compaction.
In this e�ort, we are aided by the previous works of Gampala et al. (1994) and Ogbonna and Fleck

(1995). Gampala et al. modelled the indentation of a deformable sphere and a rigid half-space. They
identi®ed the regimes of indentation, but did not identify the criterion for the onset of ®nite deformation
regime. Ogbonna and Fleck analysed the contact between identical spheres, and constructed the yield
surfaces for the compaction of a periodic array of spheres. Here, we perform a systematic study of the e�ect
of relative size and relative strength of particles in contact, and also perform a full three-dimensional
analysis of contact interactions for a periodic unit cell.

1.1. The similarity solution

Storakers et al. (1997) and Storakers (1997) have developed a similarity solution for the normal in-
dentation of two viscoplastic spheres by extending the Hill et al. (1989) solution for the indentation of a
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half-space by a rigid sphere. Here, we summarise the rate-independent version of their similarity solution.
The con®guration studied by Storakers et al. (1997) is shown in Fig. 1. Sphere 1 of radius R1 and sphere 2 of
radius R2 are pressed together in a frictionless normal indentation, so that the contact radius is a at a total
overlap of h.

The following simplifying assumptions are introduced to obtain a self-similar solution:
1. The two spheres are composed of rigid-plastic, power-law-solids in accordance with J2 ¯ow theory. In

uniaxial tension, the stress r is related to the strain e according to

r � rie
1=m; i � 1; 2; �1:1�

where sphere 1 has a reference strength r1 and sphere 2 has a reference strength r2. Both solids have the
same strain hardening exponent (1 6 m 61).

2. The contact radius is assumed to be su�ciently small compared to the radius of each sphere that each
sphere can be treated as a semi-in®nite half-space.

3. Strains and deformations are small, and the spherical pro®le of the bodies in contact is approximated by
a paraboloid of revolution. Then, if the normal displacement of sphere 1 within the contact patch is u1 at
a radius r, and the corresponding normal displacement of sphere 2 is u2, conformity of the two surfaces
within the contact dictates that

u1 � u2 � hÿ r2

2R1

ÿ r2

2R2

�1:2�

with h� R1 and h� R2.
With these restrictions, the indentation solution has the property of self-similarity, i.e., the geometry,

stress and strain ®elds at any stage of indentation can be expressed in terms of an invariant solution.
Moreover, the solution to the problem of contact between spherical bodies is a generalisation of the so-
lution for the contact between a rigid sphere and a semi-in®nite solid, and is obtained from the latter by
appropriate scaling. The method can be generalised to include rate-dependent solids with a response de-
scribable by a power law±creep law. The solution for the indentation of a semi-in®nite solid by a rigid
sphere is provided by Hill (1992), Bower et al. (1993) and Storakers et al. (1997) for a power-law creeping
solid, and by Biwa and Storakers (1995) for a J2 ¯ow theory solid.

The scaling law, relating the indentation of the spheres to the indentation of a half-space by a rigid ball,
generalises the one used in elastic Hertzian contact. An equivalent radius R0 su�ces to describe a given
geometry, and an equivalent strength re describes the combined strengths of the two spheres,

1=R0 � 1=R1 � 1=R2; rÿm
e � rÿm

1 � rÿm
2 : �1:3�

Fig. 1. Geometry of contact between two spherical particles with radii R1 and R2. A contact radius a is generated for a total overlap h.
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The average pressure is related to the contact radius a by the power-law relation

F
pa2re

� k�m� a
R0

� �1=m

; �1:4�

and the contact area is proportional to the indentation depth,

h
R0

� 1

2c2�m�
a
R0

� �2

; �1:5�

where the constants c2�m� and k�m� depend on m, but are independent of the indentation depth, and of the
diameters and strengths of the bodies in contact. Biwa and Storakers (1995) tabulated c2�m� and k�m�.
Their ®nite element formulation is based on the assumption of self-similarity and are essentially single-step
solutions, where the history dependence is replaced by a spatial (radial) dependence.

Relations (1.4) and (1.5) imply that the indentation force depends upon the indentation depth h ac-
cording to

F
pR2

0re

� K�m� h
R0

� �1��1=2m�
; �1:6a�

where

K � 2 1��1=2m�� �c 2��1=m�� �k: �1:6b�
In the present article, we use the spherical, rather than the parabolic shape of the bodies in contact. The

di�erences in the pro®les of a sphere and a paraboloid with the same curvature at the apex become sig-
ni®cant only for large contacts a=R > 0:4. Changes in the indentation regimes which we observe occur at
smaller contacts (0:1 < a=R < 0:3), so that our results are not a�ected by the di�erence between the
spherical and the parabolic shape.

Stress and strain distributions in Storakers et al. (1997) self-similar solution for the contact between the
power-law, incompressible, rigid-plastic spheres are, apart from scaling (1.3), identical to the solution for
the indentation of a half-space. This can be contrasted with the Sternberg and Rosenthal (1952) singular
solution for anti-diametric concentrated load on a linear elastic compressible sphere. Whereas in the limit of
in®nite radius, the Sternberg and Rosenthal solution does reduce to the Boussinesq solution for half-space,
the stress distributions for ®nite radii have a di�erent singularity from the Boussinesq distribution.

1.2. Programme of study

We consider the frictionless normal indentation of dissimilar elastic±plastic spheres. The relative di-
ameter and strength of the two spheres is varied over the full range, and the e�ects of yield strain and strain
hardening exponent are explored. The axisymmetric and three-dimensional con®gurations studied are
shown in Fig. 2. We consider a number of special cases:

(a) indentation of two identical deformable spheres,
(b) indentation of a deformable sphere and a rigid sphere of equal diameter,
(c) a rigid sphere indenting a deformable half-space (Brinell indentation),
(d) a sphere compressed between two ¯at rigid platens, and
(e) a deformable sphere compressed between two deformable half-spaces.
The in®nitely long chain of identical spheres (Fig. 2(a)) has symmetry planes both through the contacts

and through the centres of the particles, whereas the alternating con®guration of deformable and rigid
particles (Fig. 2(b)) has symmetry planes only through the centres of the particles. The con®gurations
shown in Fig. 2(a) and (b) are studied with and without the ®xed lateral constraint, i.e. the equatorial radius
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is either ®xed or free to expand. We ®nd that the degree of lateral constraint (illustrated by the dashed lines
in Fig. 2(a) and (b)) as practically no e�ect on the contact behaviour for the range of contact sizes studied.
The e�ect of interaction of contacts is studied by two idealisations of isostatic compaction. First, an axi-
symmetric array of identical particles is placed within an imaginary shrinking tube (Fig. 2(f)), and a radial
strain rate equal to the axial strain rate is imposed. Second, a three-dimensional simple cubic arrangement
of deformable and rigid spheres is subjected to isostatic compaction, as shown in Fig. 2(g).

Besides its practical signi®cance in Brinell and Rockwell testing, and its theoretical signi®cance as the
most frequently studied case, the con®guration in Fig. 2(c) is also the limiting geometry for a small ceramic
particle in contact with a larger metallic particle. The opposite limit of contact between a large rigid particle

Fig. 2. Axisymmetric con®gurations: (a) a line of deformable spheres with or without ®xed lateral constraint, (b) a line of alternating

deformable and rigid spheres with or without ®xed lateral constraint, (c) Brinell indentation, (d) a deformable sphere compressed

between rigid, frictionless platens, (e) a deformable sphere compressed between deformable half-spaces, (f) a line of deformable spheres

in a shrinking tube. Three-dimensional con®guration: (g) B2 lattice, initial density D0 � 0:68. Particles are shown smaller than their real

size for better visibility. The central deformable sphere has eight initial contacts with rigid spheres.
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and a small deformable particle (Fig. 2(d)) is an identical boundary value problem to that of mutual in-
dentation of equi-sized deformable particles (see Fig. 2(a)). Finally, the con®guration in Fig. 2(e) is the
limiting case of contact between a very small and a very large deformable particle.

The Brinell indentation problem of Fig. 2(c) has been studied in detail by Mesarovic and Fleck (1999)
(referred to as (I) hereafter), and it is shown therein that several stages of indentation exist. Initially,
elastic indentation occurs and the classical solution of Hertz is reproduced. The initial yield occurs when
the average contact pressure (over the projected contact area) is approximately 10% above the yield
strength of the material. Continuing indentation is characterised as elastic±plastic as both the elastic and
plastic deformation contribute to the overall response. Further indentation leads to the fully plastic re-
gime which can be subdivided into two regimes: for relatively small contact sizes, the similarity solution
applies, whereas for large contact sizes, a ®nite deformation mode dominates. In the Brinell problem, the
similarity regime is not entered for realistic values of yield strain. It is the purpose of the present article to
extend the previous study (I) to the indentation of dissimilar spheres and, in particular, to explore the
in¯uence of the relative diameter of the spheres on the regimes of dominance of the competing modes of
indentation. We shall show that the contact between spheres ®ts into the same basic framework as reported
in (I).

2. Constitutive law, ®nite element implementation and dimensionless groups

2.1. Constitutive law

It is assumed that the deformable solid satis®es J2 ¯ow theory with isotropic hardening, and with
the total strain obeying a piecewise linear/power law. In uniaxial tension, the stress r is related to the strain
e by

e � r=Ei for r 6 r0i

�r=ri�m for r > r0i

� �
; i � 1; 2; �2:1a�

where ri is a representative strength and Ei is YoungÕs modulus of the solid i ; the initial yield stress, r0i and
yield strain, e0i of the solid i are given by

r0i � rm
i

Ei

� �1=�mÿ1�
and e0i � r0i=Ei � ri

Ei

� �m=�mÿ1�
: �2:1b�

At large strains, the plastic deformation is almost identical to the pure power law (1.1):

epl � �r=ri�m ÿ r=Ei: �2:1c�
The constitutive law is chosen so that YoungÕs modulus, Ei can be varied without changing the total

strain±stress curve at large strains. This is achieved by keeping ri and m constant in Eq. (2.1c). In (I), we
compared the indentation of a half-space described by the above constitutive model and the indentation of
the half-space described by a Ramberg±Osgood type constitutive model. Di�erences were observed only in
the early stages, i.e. the elastic±plastic regime, where the Ramberg±Osgood case exhibited a more gradual
transition to the fully plastic similarity regime. The present model is computationally more convenient and
provides a clear demarcation between the elastic and plastic deformation.
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The uniaxial constitutive relations (2.1a±c) are readily generalised to the arbitrary stress±strain states
within the framework of J2 ¯ow theory by de®ning the equivalent (Mises) stress �r, the equivalent strain rate
_�e, and the equivalent strain �e:

�r �
������������
3

2
sijsij

r
; _�e �

���������������
2

3
DijDij

r
; �e�t� �

Z t

0

_�e�s�ds; �2:2�

where sij are the deviatoric components of the Cauchy stress, Dij are the components of the symmetric
part of the velocity gradient (with respect to the current con®guration), and the usual indicial notation is
used.

A series of ®nite element computations have been performed for the cases shown in Fig. 2. The strain
hardening parameter m in Eq. (2.1a±c) is assumed to take values 3, 5 and1, with the limiting case m � 1
representing an elastic±ideally plastic solid. The magnitude of the indentation depth h is chosen to cover the
range of stage I powder compaction, wherein the aggregate can be treated as discrete particles with
identi®able contacts. Assuming a�ne deformation and isostatic compaction of particles of equal radius R,
the relative density, D� (solid volume/total volume), is related to the inter-penetration h by

D � D0 1

�
ÿ h

2R

�ÿ3

; �2:3�

where D0 designates the initial relative density. For D0 � 0:64, which corresponds to the dense random
packing of identical spheres, the maximum value of indentation depth h � 0:2R used here, corresponds to
D � 0:88. Typically, stage I compaction ends at a relative density D � 0:8, as discussed by Fleck et al.
(1992).

2.2. Finite element implementation

The ®nite element calculations were performed using the commercial ®nite element code ABAQUSABAQUS (1995).
Details of the formulation can be found in the ABAQUSABAQUS Theory Manual, (1995). Here, we only mention that
the ®nite deformation and rotations are treated with an ``updated Lagrangian'' formulation in that the
con®guration at the beginning of each increment is the reference con®guration and that the objective
(Jaumman) stress rate measure is used to account for the material rotation.

The contact surface option and the rigid surface option were used, and a typical axisymmetric mesh for
the deformable particle is shown in Fig. 3(a). The number of load steps varied between 150 and 1000. In
order to maximise the accuracy, the nodal spacing along the contact surface starts at 0.0015R and gradually
increases along the perimeter. To verify the results at small contact sizes, a mesh of double density was used
for selected cases. The mesh for the case of Brinell indentation has already been discussed in (I), whereas the
mesh for a deformable sphere in contact with a deformable half-space (Fig. 2(e)) is a combination of the
meshes shown in Fig. 3(a) and in (I). The three-dimensional mesh for the B2 unit cell is shown in Fig. 3(b).
It has a shortest distance between the nodes of 0.005R at the location of initial contact. A single run with
m � 3 was performed and it required 145 increments.

The error associated with the discrete increment in contact size is discussed in detail in (I). Here, we
summarise only the main points. As the indentation depth h increases, successive surface nodes come into
contact and the contact size increases in discrete steps. Thus, in the loading interval over which the number
of contacting nodes is constant, the indentation depth h increases but the contact radius a remains almost
constant. On a plot with contact radius a as abscissa and h as ordinate, the data points appear as vertical
columns, with each column corresponding to a constant number of nodes in contact. The height of the
columns (scatter bands) scales with the ratio of node spacing along the contact surface and the contact
radius, a. In (I), we compared the ®nite element results with the elastic Hertzian solution for the average
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pressure and (a2=2hR0), and concluded that the mid-points in the bands are the most accurate. For clarity,
only the mid-points are reported here. For the mesh in Fig. 3(a), the scatter in h is �7:5% at a=R � 0:01.
The mesh was designed so that the scatter quickly decreases to under �2:5% at a=R > 0:08. Similar col-

Fig. 3. Finite element meshes: (a) axisymmetric mesh with about 2500 second order elements and 23,500 degrees of freedom; eight-node

rectangles and six-node triangles for transition. The shortest distance between the nodes at initial contact is 1:5� 10ÿ3R. (b) three-

dimensional mesh for isostatic compaction of the B2 lattice of soft and hard particles shown in Fig. 1 (f). 1/24-th of the soft sphere is

meshed. The mesh comprises about 4300 second order elements and 100,000 degrees of freedom; 20-node bricks and 15-node triangular

prisms for transition. Mid-face nodes are added to the brick elements on the contact surface. The shortest distance between the nodes

at initial contact is 5� 10ÿ3R.
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umns of data points will appear in the plots of force, average pressure and (a2=2hR0) against the contact
radius, a.

2.3. Presentation of results in terms of dimensionless groups

The appropriate choice of non-dimensional groups to characterise the competing regimes of deforma-
tion requires consideration. For the case of Brinell indentation of an elastic±plastic half-space by a rigid
indenter, it was shown in (I) that, with increasing indent depth, the dominant deformation mechanism
evolves from the elastic Hertzian regime, through elastic±plastic and fully plastic similarity regimes, to the
®nite deformation regime. Within the elastic regime, the indentation pressure scales with (E�a=R), where a is
the contact radius, R is the radius of the ball indenter; E� is the plane strain modulus and is related to
YoungÕs modulus E and to PoissonÕs ratio m by E� � E=�1ÿ m2�. The transition between the elastic regime
and the elastic±plastic regime, and the transition between the elastic-plastic regime and the similarity regime
occur when aE�=Rr0 attains critical values, where r0 is the initial yield strength of the half-space. The
transition between the similarity regime and the ®nite deformation regime is characterised by a critical value
of the normalised contact radius a=R.

The question arises whether a more general scaling exists for the geometries of Fig. 2. We shall adopt
the combined elastic modulus for the two contacting bodies which is rigorously valid in the Hertzian
limit,

1

E�
� 1ÿ m2

1

E1

� 1ÿ m2
2

E2

; �2:4�

where E1, E2, m1 and m2 are YoungÕs moduli and Poisson ratios of the two bodies. The combined radius of
curvature is taken as R0, as de®ned in Eq. (1.3), and as suggested by both the Hertz solution and by the
similarity solution. Further, with R0 de®ned by Eq. (1.3), yield initiates when aE�=R0r0 reaches a critical
value. Here, r0 is the lower of the two initial yield strengths. We shall show that the behaviour in the elastic±
plastic regime is governed by the magnitude of aE�=R0r0 for all the cases shown in Fig. 2.

By analogy with Brinell indentation (I), it might be thought that the onset of the ®nite deformation
regime is given by a critical value of a=R0. However, a careful comparison between the two identical
boundary value problems ± the contact between the two identical deformable spheres (Fig. 2(a)) and the
contact between a deformable sphere and a rigid half-space (Fig. 2(d)) ± shows that this cannot be true,
since the ratio a=R0 has di�erent values in the two cases for the same value of contact radius a. Thus, it
appears that a general transition criterion for the onset of the ®nite deformation regime does not exist.
Nonetheless, throughout the article we shall present the results using the similarity scaling (1.3).

3. Contact between deformable and rigid solids

Consider indentation of a deformable sphere of radius Rd and a rigid sphere of radius Rr. The following
cases are considered:

(i) Rd=Rr � 0, a deformable sphere indented by a rigid half-space (Fig. 2(d)),
(ii) Rd=Rr � 1, a deformable sphere indented by a rigid sphere of the same size (Fig. 2(b)), and
(iii) Rd=Rr � 1, a rigid sphere indenting a deformable half-space (Fig. 2(c)). Selected results are taken
from (I) for this case.
Indentation results are presented for these three geometries, ®rst for the case of an elastic±ideally plastic

solid, and then for the case of an elastic-strain hardening solid.
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3.1. Elastic±ideally plastic solids

The indentation response of a rigid sphere against an elastic±ideally plastic sphere is presented in Fig. 4.
The role of yield strain and the relative size of spheres is explored, and the results are presented in the form
of a plot of average contact pressure versus contact size (Fig. 4(a) and (b)), contact area versus indent depth
(Fig. 4(c) and (d)) and contact force versus indent depth (Fig. 4(e)).

First consider the ®nite element predictions of the average indentation pressure plotted against
�aE�=R0r0� in Fig. 4(a), for a range of values of E�=r0, and for the geometries (i) ± (iii) listed above. Here,
r0 � r1 equals the yield strength of the deformable solid. The initial stage of the elastic Hertzian inden-
tation exists for �aE�=R0r0� less than 2.5. This regime is not considered further here. For �aE�=R0r0� less
than about 50, the average pressure increases with �aE�=R0r0�; Johnson (1970, 1985) refers to this as the
elastic±plastic regime. At higher values of �aE�=R0r0�, a plateau value of pressure is attained for all ge-
ometries in agreement with the value predicted by the rigid - ideally plastic similarity solution (1.4).
However, we note that for su�ciently high values of yield strain, the similarity solution is not attained and
the peak pressure is lower than the value predicted by the similarity solution.

At somewhat larger values of �aE�=R0r0�, the average pressure falls with increasing contact size and the
curves markedly diverge. We shall refer to this regime as the ®nite deformation regime. At these large values
of contact size, the elastic contribution to the strain ®eld beneath the indenter is negligible, and the pa-
rameter �aE�=R0r0� ceases to uniquely de®ne the degree of indentation. For this regime, a plot of nor-
malised contact pressure versus a=R0 in Fig. 4(b) indicates that a=R0 characterises the contact pressure for a
given geometry, but does not bring together the data for di�erent geometries. Within the ®nite deformation
regime, the average pressure diminishes fast with increasing a=R0 for the case (i) of a deformable sphere
between rigid platens, Rd=Rr � 0, and slowest for the case (iii) of Brinell indentation, Rd=Rr � 1. The drop
in the average pressure with increasing contact size for a=R0 > 0:16 for the case of Brinell indentation
represents a failure of the assumptions involved in the similarity solution, speci®cally the assumption of
in®nitesimal strain kinematics and the boundary condition of uniform normal velocity. As the contact size
increases, the tangential velocity of points in contact with the indenter deviates from the horizontal, so that
the uniform vertical velocity boundary condition ceases to be appropriate. For geometries (i) and (ii), the
deformable body is of ®nite size. As the contact size increases, the assumption that the body can be treated
as a semi-in®nite solid (assumption (2) of section 1.1) ceases to be appropriate. Thus, the drop in the av-
erage pressure occurs at a lower value of a=R0 for cases (i) and (ii) than for case (iii). This large drop in the
average pressure for large contacts has been observed experimentally for the compression of elastic±plastic
spheres between ¯at elastic platens (Chaudhri et al., 1984; Timothy et al., 1987; Chaudhri, 1987).

The normalised contact area (a2=2hR0) is plotted against (aE�=R0r0) in Fig. 4(c) and against a=R0 in Fig.
4(d). As noted above in the discussion of contact pressure, it is clear that the non-dimensional group
(aE�=R0r0) is the governing parameter for the elastic±plastic regime. With a further increase in contact size,
the rigid-plastic similarity regime of constant (a2=2hR0) is attained only for very low values of the yield
strain. Finally, for large a=R0 values, the normalised contact area (a2=2hR0) decreases with increasing a=R0.
Within this regime, the contact area depends upon both the type of geometry and, for high values of yield
strain, the magnitude of the yield strain.

The relation between the indent depth and the contact force is of fundamental importance in applica-
tions of indentation theory to the contact sti�ness of rough surfaces and to the macroscopic compaction
response of an aggregate of particles. Plots of the normalised contact load (F =pR2

0r0) versus the norma-
lised indent depth h=R0 are given in Fig. 4(e) for the same range of values of yield strain as reported in
Fig. 4(a±d). The range of indentation depths of interest in powder compaction falls within the ®nite de-
formation regime. The contact sti�ness is lower than predicted by the similarity solution, and this is due to
the multiplicative e�ect of the lower contact pressure (Fig. 4(b)) and the smaller contact area (see Fig. 4(d)),
within the ®nite deformation regime.
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Fig. 4. Comparison of the similarity solution and ®nite element results for the elastic±ideally plastic solid: (a) average pressure as a

function of aE�=R0r0, (b) average pressure as a function of a=R0, (c) a2=2hR0 as a function of aE�=R0r0, (d) a2=2hR0 as a function of

a=R0, (e) Load±displacement curves. In each ®gure, results are shown for (i) a sphere indented by a rigid half-space: small open

symbols; (ii) a sphere indented by a rigid sphere of equal size: solid symbols; and (iii) a half-space indented by a rigid sphere: large open

symbols. Circles: E�=r0 � 10,000, Diamonds: E�=r0 � 1000, Triangles: E�=r0 � 250.
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3.2. Elastic-hardening solids

Practical engineering alloys strain harden in the plastic range, and it is instructive to explore the e�ects of
strain hardening on the indentation response for an idealised elastic-strain hardening solid as characterised
by Eq. (2.1). Here, we report only the results for a solid which strain hardens strongly such as annealed
copper, with m � 3. Additional calculations were performed for m � 5 and the results follow the same
general trends as discussed here for m � 3. On noting that the similarity solution (1.4) states that the av-
erage indentation pressure scales with the reference stress

rr � re

a
R0

� �1=m

; �3:1�

we present results for the average indentation pressure by normalising stresses with respect to rr. For se-
lected values of yield strain and for m � 3, predictions for the reduced average pressure �F =pa2rr� are given
in Fig. 5(a) and (b) and for the normalised contact area a2=2hR0 in Fig. 5(c) and (d). The same three ge-
ometries (i)±(iii) are considered as de®ned at the start of Section 3 and as reported for the elastic±ideally
plastic solid in Fig. 4(a±e).

For all three geometries and for all values of yield strain considered, the average contact pres-
sure �F =pa2rr� increases with increasing �aE�=R0r0� until �aE�=R0r0� is about 100, (see Fig. 5(a)). At
higher values of (aE�=R0r0), the similarity regime is attained provided the yield strain is su�ciently
small: r0=E� less than about 0.0003, as shown in (I). The ®nite deformation regime is entered when a=R0

exceeds approximately 0.06 for case (i) and 0.1 for case (ii), as shown in Fig. 5(b). No drop in the re-
duced average pressure is observed at large contact sizes for Brinell indentation, case (iii), but if the de-
formable body is of ®nite size, cases (i) and (ii), the reduced average pressure drops with increasing contact
size.

The evolution of the normalised contact area with contact size (Fig. 5(c) and (d)), for the
strain hardening case, m � 3 is qualitatively the same as in the elastic±ideally plastic case (Fig. 4(c) and
(d)). To within numerical error, the similarity solution is attained only for very low values of yield
strain. The parameter a2=2hR0 increases with increasing (aE�=R0r0) in the elastic±plastic regime, re-
mains constant in the fully plastic similarity regime and then decreases again in the ®nite deformation
regime.

The similarity solution (1.6) predicts that for m � 3, the normalised indentation load (F =pR2
0re) is

proportional to the normalised indent depth, h=R0 to the power of 7/6. Numerical results show that this
contact law breaks down within the ®nite deformation regime (Fig. 5(e)), but the deviation from the
similarity solution is less pronounced than in the elastic±ideally plastic case (Fig. 4(e)). The e�ect of elas-
ticity upon contact sti�ness is stronger than the e�ect of the relative diameter of spheres.

4. Contact between two deformable solids

In this section, we discuss the frictionless normal indentation between two deformable spheres with radii
R1 and R2. In particular, we explore the e�ect of relative size R1=R2, for two spheres made of the same
material. We consider two extreme cases:

Case (A): Two identical spheres with R1 � R2, as shown in Fig. 2(a), and
Case (B): A sphere of radius R1 indenting a half-space (radius R2 � 1), as shown in Fig. 2(e).
Case (A), the indentation of two identical spheres, is an identical boundary value problem to that of a

deformable sphere pressed against a rigid half-space (Fig. 2(d)), discussed as case (i) in Section 3. The
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Fig. 5. Comparison of the similarity solution and ®nite element results for the elastic-power-law hardening solid, with m � 3:

(a) reduced average pressure, F =pa2rr, as a function of aE�=R0r0, (b) reduced average pressure as a function of a=R0, (c) a2=2hR0 as a

function of aE�=R0r0, (d) a2=2hR0 as a function of a=R0, (e) load±displacement curve. In each ®gure results are shown for (i) a sphere

indented by a rigid half-space: small open symbols; (ii) a sphere indented by a rigid sphere of equal size: solid symbols; and (iii) a half-

space indented by a rigid sphere: large open symbols. Circles: E�=r0 � 10,000, Diamonds: E�=r0 � 700.
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results for two identical spheres are easily obtained by rescaling the results for the case of a deformable
sphere pressed against a rigid half-space, as follows. In both problems, h is de®ned as the total overlap
of the bodies in contact (see Fig. 1). The de®nitions of the equivalent radius R0 and the equivalent
strength re imply the following relations. On denoting the case of two identical sphere by a superscript (A)
and the case of a deformable sphere pressed against a rigid half-space by a superscript (i), we have for a
given contact radius a,

R�A�0 � �1=2�R�i�0 ; r
�A�
e � 2ÿ1=mr�i�e and h�A� � 2h�i�:

Now, consider case (B). Initially, the sphere and the half-space both deform and contribute to the total
overlap h as suggested by the similarity solution. As the contact size increases, the deformation is con-
centrated within the sphere. Deformed shapes for the case (B) are shown in Fig. 6(a) and (b) for the cases
m � 3 and m � 1. When both the solids are elastic±ideally plastic (Fig. 6(a)), the half-space is practically
rigid. In the elastic-hardening case, the contribution of the half-space deformation to the overall dis-
placement is minor. This can be explained as follows: At large a=R0 values, the average contact pressure for
a deformable sphere on a rigid half-space is lower than the average contact pressure for a rigid sphere
indenting a deformable half-space (see Fig. 4(b)). Thus, the sphere undergoes larger plastic deformation
than the half-space for the same (large) value of a=R0.

The force±displacement plots for the contact of deformable spheres, cases (A) and (B), are shown in Fig.
7(a) for elastic±ideally plastic solids and in Fig. 7(b) for elastic-hardening solids with m � 3. For both values
of m, the contact sti�ness is weakly dependent upon the relative size of the spheres for h=R0 < 0:1. At larger
values of h=R0, the contact force depends more strongly upon the relative size of spheres, and the curves
diverge.

5. Indentation maps

It is instructive to construct indentation maps, ®rst for the contact between a deformable and a rigid
sphere (Fig. 8(a)), and second, for two deformable spheres (Fig. 8(b)). The appropriate axes are a=R0 and
r0=E�, where R0 is de®ned in Eq. (1.3) and r0 is the lower of the two initial yield strengths:

Fig. 6. Initial and deformed con®guration for the contact of a deformable sphere and a deformable half-space, case (B): (a) elastic±

ideally plastic solids, E�=r0 � 5000, a=R0 � 0:6; (b) elastic-hardening solids, m � 3, E�=r0 � 5000, a=R0 � 0:5.

7084 S.Dj. Mesarovic, N.A. Fleck / International Journal of Solids and Structures 37 (2000) 7071±7091



r0 � minfr01; r02g; �5:1�
where r01 and r02 are de®ned in Eq. (2.1b).

A detailed indentation map has already been developed for the case of Brinell indentation in (I). Here,
we build on the results of (I) and develop indentation maps for the contact between a deformable sphere
with radius Rd and a rigid sphere with radius Rr, for relative sizes Rd=Rr � 0; 1 and1, and for m � 3 and1
(Fig. 8(a)). We de®ne a fully plastic, similarity regime as a region of a=R0 ÿ r0=E� space in which both the
reduced average pressure F =pR2

0re and the normalised contact size a2=2hR0 equal the values given by the
similarity solution, and are independent of the contact size. The ®nite deformation regime is de®ned as a
region of a=R0 ÿ r0=E� space in which either the reduced average pressure F =pR2

0rr or the normalised
contact size a2=2hR0 decrease with increasing contact size. For a given value of strain hardening exponent
m, the boundaries between the elastic and elastic±plastic regimes, and between the elastic±plastic and

Fig. 7. Load±displacement curves for the indentation of two identical deformable spheres, case (A), shown by open symbols, and

indentation of a deformable sphere and a deformable half-space, case (B), shown by solid symbols: (a) elastic±ideally plastic solids,

Circles: E�=r0 � 5000, Diamonds: E�=r0 � 500, Triangles: E�=r0 � 125; (b) elastic-hardening solids, m � 3. Circles: E�=r0 � 5000,

Diamonds: E�=r0 � 350.
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similarity regimes are identical for all three geometries, as expected from the Hertz solution and the sim-
ilarity solution. The onset of the ®nite deformation regime is governed by the relative size of the deformable
sphere: the smaller the relative size of the deformable sphere, the smaller is the critical contact radius a=R0

for the onset of the ®nite deformation regime. Strain hardening has a signi®cant e�ect on the similarity/
®nite deformation boundary only for the case of the rigid sphere and deformable half-space; as m de-
creases from 1 to 3, the onset of the ®nite deformation regime shifts to a larger value of a=R0 by a factor
of about 2.

Indentation maps for the contact between two identical deformable spheres (case A), and between
a deformable sphere and a deformable half-space (case B), are shown in Fig. 8(b), for m � 3 and m � 1.

Fig. 8. (a) Indentation maps for the contact between a rigid sphere and a deformable sphere: The deformable sphere is elastic±ideally

plastic (thin lines), and elastic-power-law hardening with m � 3 (thick lines). The ratio between the radius of the deformable sphere Rd

and the radius of the rigid sphere Rr is given by (i) Rd=Rr � 0, short dashed lines; (ii) Rd=Rr � 1, long dashed lines; and (iii) Rd=Rr � 1,

full lines; (b) Indentation maps for the contact between two deformable spheres: The solid is elastic-ideally plastic (thin lines), and

elastic-power-law hardening with m � 3 (thick lines). The ratio between the radii of deformable spheres R1 and R2 is: R1=R2 � 1 for case

(A), full lines; R1=R2 � 0 for case (B), dashed lines.
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The similarity regime is very di�cult to achieve for the case of contact between two deformable bod-
ies. An extremely low value of r0=E� is needed which makes the associated computations expensive.
None of the cases shown in Fig. 7 falls within the similarity regime. Boundaries of the similarity regime
in Fig. 8(b) are estimated by extrapolation of the results reported in Section 4, using the following ar-
guments:

(i) For a given hardening exponent m, the boundary between the elastic±plastic and similarity regimes is
a function of �aE�=R0r0� only.
(ii) For a given m and a given relative size of particles, the boundary between the similarity regime and
the ®nite deformation regime depends only upon a=R0.
The elastic/elastic±plastic and elastic±plastic/similarity boundaries are again independent of the rela-

tive size of the spheres. The similarity/®nite deformation boundaries for the two geometries almost
coincide for m � 3 and di�er by a factor of about 2 in a=R0 value for m � 1. This can be traced
back to the feature that, for m � 1, the half-space deforms much less than the sphere, as discussed in
Section 4.

6. Compaction of a 3-D unit cell

Micromechanical constitutive models for the stage I compaction of powders (Fleck et al., 1992; Fleck
1995; Storakers et al., 1999) rely upon the assumption that there is no cross-coupling between the force±
displacement laws for each contact of a particle: it is assumed that each contact behaves independently. A
three-dimensional calculation of the response of a random assembly of particles is prohibitively expensive.
Here, we estimate the lowest relative density for which contacts cease to behave independently. For that
purpose, we seek to de®ne the periodic arrangement which is most likely to promote the contact interaction.
Based on the present experience and previous work (Ogbonna and Fleck, 1995), one concludes that the
contact interaction is promoted by
1. isostatic compaction (rather than closed die compaction),
2. contacts between soft and rigid particles,
3. a strong hardening response, and
4. contact between spheres of equal size.

Thus, we select an ordered binary mix of deformable and rigid spheres, of equal size and equal volume
fraction. The B2 unit cell, based on two overlapping simple cubic lattices is shown in Fig. 2(g). Each
deformable sphere has eight rigid nearest neighbours and six deformable next nearest neighbours. This
arrangement is chosen because its initial density, D0 � 0:68 is close to the dense random packing den-
sity of 0.64, and because the 50±50 mix of metal ceramic spheres gives a highly symmetric con®guration. By
considering isostatic compaction, the symmetry can be exploited to minimise the number of degrees of
freedom in the ®nite element model. The mesh in Fig. 3(b) models a 1/24 of the central soft sphere. A rigid
sphere initially in contact with the central sphere is modelled as a spherical rigid surface. During the
course of compaction, the number of contacts is allowed to increase from 8 to 14; the additional
six contacts are with deformable next nearest neighbours and are modelled as contacts with ¯at rigid
surfaces.

The deformable sphere is taken to be elastic±plastic with a hardening index m � 3 and E�=r0 � 700.
These values are chosen to maximise the convergence rate. Since the analysis takes about 30 days of
CPU time on a fast workstation, these are important considerations. With this choice of yield strain, the
similarity regime is not expected (see Fig. 4). Nevertheless, the 3-D simulation of isostatic compaction
provides a useful assessment of the accuracy of the simpler axisymmetric models. We compare the following
cases:
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I. uniaxial compaction of a line of identical deformable spheres (Fig. 2(a)) and a line of alternating de-
formable and rigid spheres of equal diameter (Fig. 2(b)),
II. an axisymmetric model of isostatic compaction (Fig. 2(f)), in which the shrinking cylinder enforces a
radial strain rate equal to the axial strain rate, and
III. the three-dimensional isostatic compaction of a periodic B2 cell (Fig. 2(g)).
The evolution of the reduced average pressure with the non-dimensional variable aE�=R0r0 is shown in

Fig. 9(a) for cases I±III. In the elastic±plastic regime, F =pa2rr increases with aE�=R0r0, and all the curves
coincide. At the start of the ®nite deformation regime, the response is again independent of the type of
loading, but the average pressure is greater for the contacts between deformable and rigid spheres than for
the contacts between deformable spheres. The contact pressure depends upon the loading arrangement only
in the latter parts of the ®nite deformation regime.

Fig. 9. E�ect of contact±contact interaction on the contact force. Comparison between a line of identical deformable spheres, a line of

deformable and rigid spheres of equal diameter, a shrinking-tube model of isostatic compaction and three-dimensional isostatic

compaction of a periodic B2 unit cell: (a) reduced average pressure, F =pa2rr as a function of aE�=R0r0, (b) a2=2hR0 as a function of

aE�=R0r0, (c) Load±displacement response.
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Next, consider the normalised contact area a2=2hR0, plotted against aE�=R0r0 in Fig. 9. The contact area
becomes sensitive to the lateral constraint at a lower value of aE�=R0r0 than the contact pressure F =pa2rr.
The axisymmetric model for isostatic compaction (case II) is over-constrained and predicts much greater
contact±contact interaction than the more realistic B2 unit cell.

The force±displacement relations are plotted in Fig. 9(c), with axes �h=R0�7=6
and F =pR2

0re. It is clear that
the axisymmetric model for isostatic compaction (case II) predicts too sti� a response. Ogbonna and Fleck
(1995) have also compared the compaction response of a line of deformable spheres (case I) with a line of
deformable spheres constrained by a shrinking tube (case II). They too ®nd that the highly constrained
axisymmetric model gives a much sti�er response than the unconstrained line of deformable spheres (see
Fig. 10 of their article). The more realistic results for the B2 unit cell (case III) indicate that the contacts
behave independently up to �h=R0�7=6 � 0:2, which corresponds to the relative density D � 0:826. The
sudden increase in the contact force of the B2 unit cell for �h=R0�7=6

between 0.20 and 0.22 is due to the
simultaneous creation of six new contacts.

With the exception of case II (the over-constrained line of deformable spheres), the contact force versus
indent depth response is almost identical for all loading cases, for �h=R0�7=6

in the range 0±0.2. For these
cases, the contact load is somewhat below than that given by the similarity solution; this is expected, as
the relevant results are within the ®nite deformation regime, and the assumed value of the yield strain is
large.

7. Concluding remarks

We have constructed indentation maps for frictionless normal indentation of deformable spheres, and
for the indentation of a deformable sphere by a rigid sphere. The axes of the map are the normalised
contact radius a=R0 and a measure of the initial yield strain, r0=E� (see Eqs. (1.3), (2.4) and (5.1)). The
general features of both maps can be summarised as follows. First, the boundary between the elastic and the
elastic±plastic regimes is independent of both the relative size of the spheres and the strain hardening ex-
ponent. Second, the boundary between the elastic±plastic and the similarity regimes depends somewhat on
the level of strain hardening but is independent of the relative size of the spheres. And third, the position of
the ®nite deformation regime depends both on the degree of strain hardening and the relative size of the
spheres.

For the purpose of building a constitutive model for cold powder compaction, we require the force
versus displacement contact law between dissimilar spheres for indentation depths in the range
h=R0 � 0±0:2. The contact sti�ness is reasonably well approximated by the similarity power law (1.6) but
with a modi®ed value for the sti�ness parameter K, as de®ned in Eq. (1.6b). We de®ne KFEM as the value for
K at h=R0 � 0:1 from the numerical simulations solution. Ktheory is the value for K given by the similarity
solution, (see Eq. (1.6b). The ratio KFEM=Ktheory lies in the narrow range of 0.55±0.87 for all geometries
considered and for the strain hardening exponent in the range m � 3 to m � 1. Consistently, KFEM=Ktheory

increases with decreasing m (see Fig. 10). The contact between two deformable spheres gives slightly lower
values for KFEM=Ktheory than the contact between a deformable and a rigid sphere, for a given relative size
and strain hardening exponent.

We have shown that the assumption of independent contacts holds to about D � 0:82, for the case of
isostatic compaction of a B2 unit cell of deformable and rigid spheres, with m� 3. It is reasonable to
assume that for higher values of m and for the isostatic compaction of identical deformable spheres,
the assumption of independent contacts will hold to higher relative densities than D � 0:82. We con-
clude that the assumption of independent deformation at contacts is reasonable for stage I powder
compaction.
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